819 research outputs found

    Circumstellar Disks Around Binary Stars in Taurus

    Get PDF
    We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as 104M10^{-4} M_{\odot}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of FmmM1.52.0F_{mm} \propto M_{\ast}^{1.5-2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.Comment: To appear in the Astrophysical Journal, 12 page

    The mid-infrared spectrum of the transiting exoplanet HD 209458b

    Get PDF
    We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 microns. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 microns, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broad-band eclipse depth to be 0.00315 +/- 0.000315, implying significant redistribution of heat from the dayside to the nightside. This work required development of improved methods for Spitzer/IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.Comment: 35 pages, 12 figures, revised version accepted by the Astrophysical Journa

    Misaligned Protoplanetary Disks In A Young Binary Star System

    Get PDF
    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our Solar System; their orbits may be eccentric or inclined with respect to the host star\u27s equator, and the population of giant planets orbiting close to their host stars suggests appreciable orbital migration. There is at present no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star in an orbit that is inclined relative to the planet\u27s orbital plane. Such mechanisms require significant mutual inclinations between the planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but often the measurements of these misalignments are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tauri are misaligned by 60 to 68 degrees, such that one or both of the disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently because of the binary formation process

    Pulsed Accretion in the T Tauri Binary TWA 3A

    Get PDF
    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A's time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (~20 observations per orbit) for ~15 orbital periods. From U-band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ~4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A's average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.Comment: 6 pages, 4 figure

    Interferometric Evidence for Resolved Warm Dust in the DQ Tau System

    Get PDF
    We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an 'excess' source. Remarkably the excess source is resolved in our data, similar in scale to the binary itself (\sim 0.2 AU at apastron), rather than the larger circumbinary disk (\sim 0.4 AU radius). Our observations support the \citet{Mathieu1997} and \citet{Carr2001} inference of significant warm material near the DQ Tau binary.Comment: 14 pgs, 3 figures, ApJL in pres

    The circumbinary disk of HD 98800B: Evidence for disk warping

    Get PDF
    The quadruple young stellar system HD 98800 consists of two spectroscopic binary pairs with a circumbinary disk around the B component. Recent work by Boden and collaborators using infrared interferometry and radial velocity data resulted in a determination of the physical orbit for HD 98800B. We use the resulting inclination of the binary and the measured extinction toward the B component stars to constrain the distribution of circumbinary material. Although a standard optically and geometrically thick disk model can reproduce the spectral energy distribution, it cannot account for the observed extinction if the binary and the disk are coplanar. We next constructed a dynamical model to investigate the influence of the A component, which is not in the Ba‐Bb orbital plane, on the B disk. We find that these interactions have a substantial impact on the inclination of the B circumbinary disk with respect to the Ba‐Bb orbital plane. The resulting warp would be sufficient to place material into the line of sight and the noncoplanar disk orientation may also cause the upper layers of the disk to intersect the line of sight if the disk is geometrically thick. These simulations also support that the dynamics of the Ba‐Bb orbit clear the inner region to a radius of~3 AU. We then discuss whether the somewhat unusual properties of the HD 98800B disk are consistent with material remnant from the star formation process or with more recent creation by collisions from larger bodies

    Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism

    Get PDF
    Using a new grism at the Keck Interferometer, we obtained spectrally dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These data show that the measured radius of the emission varies substantially from 2.0-2.4 microns. Simple models can reproduce these wavelength-dependent variations using extended molecular layers, which absorb stellar radiation and re-emit it at longer wavelengths. Because we observe spectral regions with and without substantial molecular opacity, we determine the stellar photospheric radius, uncontaminated by molecular emission. We infer that most of the molecular opacity arises at approximately twice the radius of the stellar photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ

    Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars

    Get PDF
    We present near-infrared observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milli-arcseconds and a spectral resolution of ~2000. Our observations spatially resolve gas and dust in the inner regions of protoplanetary disks, and spectrally resolve broad-linewidth emission from the Brackett gamma transition of hydrogen gas. We use the technique of spectro-astrometry to determine centroids of different velocity components of this gaseous emission at a precision orders of magnitude better than the angular resolution. In all sources, we find the gaseous emission to be more compact than or distributed on similar spatial scales to the dust emission. We attempt to fit the data with models including both dust and Brackett gamma-emitting gas, and we consider both disk and infall/outflow morphologies for the gaseous matter. In most cases where we can distinguish between these two models, the data show a preference for infall/outflow models. In all cases, our data appear consistent with the presence of some gas at stellocentric radii of ~0.01 AU. Our findings support the hypothesis that Brackett gamma emission generally traces magnetospherically driven accretion and/or outflows in young star/disk systems.Comment: 48 pages, including 17 figures. Accepted for publication by Ap
    corecore